INTEGRATED CIRCUITS

DATA SHEET

74ABT126Quad buffer (3-State)

Product data Supersedes data of 1998 Jan 16

Quad buffer (3-State)

74ABT126

FEATURES

- Quad bus interface
- 3-State buffers
- Live insertion/extraction permitted
- Output capability: +64 mA / -32 mA
- Latch-up protection exceeds 500 mA per JEDEC Std 17
- ESD protection exceeds 2000 V per MIL STD 883 Method 3015 and 200 V per Machine Model
- Power-up 3-State
- Inputs are disabled during 3-State mode

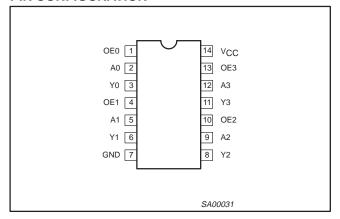
DESCRIPTION

The 74ABT126 high-performance BiCMOS device combines low static and dynamic power dissipation with high speed and high output drive.

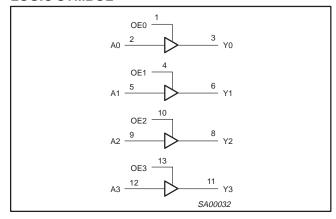
The 74ABT126 device is a quad buffer that is ideal for driving bus lines. The device features four Output Enables (OE0, OE1, OE2, OE3), each controlling one of the 3-State outputs.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS $T_{amb} = 25 ^{\circ}C; GND = 0 V$	TYPICAL	UNIT
t _{PLH} t _{PHL}	Propagation delay An to Yn	$C_L = 50 \text{ pF}; V_{CC} = 5 \text{ V}$	2.9	ns
C _{IN}	Input capacitance	$V_I = 0 \text{ V or } V_{CC}$	4	pF
C _{OUT}	Output capacitance	Outputs disabled; $V_O = 0 \text{ V or } V_{CC}$	7	pF
I _{CCZ}	Total supply current	Outputs disabled; V _{CC} = 5.5 V	65	μΑ

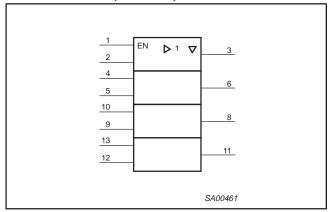

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	PART NUMBER	DWG NUMBER
14-Pin plastic SO	−40 °C to +85 °C	74ABT126D	SOT108-1
14-Pin Plastic SSOP Type II	−40 °C to +85 °C	74ABT126DB	SOT337-1
14-Pin Plastic TSSOP Type I	−40 °C to +85 °C	74ABT126PW	SOT402-1


PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
2, 5, 9, 12	A0 – A3	Data inputs
3, 6, 8, 11	Y0 – Y3	Data outputs
1, 4, 10, 13	OE0 - OE3	Output enable inputs
7	GND	Ground (0 V)
14	V _{CC}	Positive supply voltage

PIN CONFIGURATION


LOGIC SYMBOL

Quad buffer (3-State)

74ABT126

LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE

INP	INPUTS OEn An					
OEn	An	Yn				
Н	L	L				
Н	Н	Н				
L	Х	Z				

H = High voltage level

L = Low voltage level

X = Don't care Z = High impedance "off" state

ABSOLUTE MAXIMUM RATINGS^{1, 2}

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		−0.5 to +7.0	V
I _{IK}	DC input diode current	V _I < 0 V	-18	mA
VI	DC input voltage ³		-1.2 to +7.0	V
lok	DC output diode current	V _O < 0 V	-50	mA
V _{OUT}	DC output voltage ³	output in Off or HIGH state	-0.5 to +5.5	V
l _{OUT}	DC output current	output in LOW state	128	mA
T _{stg}	Storage temperature range		-65 to 150	°C

NOTES:

- 1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to
- absolute-maximum-rated conditions for extended periods may affect device reliability.

 2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150 °C.

 3. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

CVMDOL	PARAMETER	LIM	LINUT	
SYMBOL	PARAMETER	Min	Max	UNIT
V _{CC}	DC supply voltage	4.5	5.5	V
V _I	Input voltage	0	V _{CC}	V
V _{IH}	HIGH-level input voltage	2.0		V
V _{IL}	LOW-level Input voltage		0.8	V
I _{OH}	HIGH-level output current		-32	mA
I _{OL}	LOW-level output current		64	mA
Δt/Δν	Input transition rise or fall rate	0	10	ns/V
T _{amb}	Operating free-air temperature range	-40	+85	°C

Quad buffer (3-State)

74ABT126

DC ELECTRICAL CHARACTERISTICS

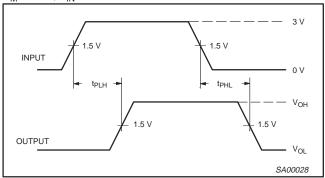
					LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS	T _{amb} = +25 °C				–40 °C 35 °C	UNIT
			Min	Тур	Max	Min	Max	1
V _{IK}	Input clamp voltage	V _{CC} = 4.5 V; I _{IK} = -18 mA		-0.9	-1.2		-1.2	V
		$V_{CC} = 4.5 \text{ V}; I_{OH} = -3 \text{ mA}; V_I = V_{IL} \text{ or } V_{IH}$	2.5	2.9		2.5		V
V_{OH}	HIGH-level output voltage	$V_{CC} = 5.0 \text{ V}; I_{OH} = -3 \text{ mA}; V_I = V_{IL} \text{ or } V_{IH}$	3.0	3.4		3.0		V
		V_{CC} = 4.5 V; I_{OH} = -32 mA; V_I = V_{IL} or V_{IH}	2.0	2.4		2.0		V
V _{OL}	LOW-level output voltage	$V_{CC} = 4.5 \text{ V}; I_{OL} = 64 \text{ mA}; V_I = V_{IL} \text{ or } V_{IH}$		0.35	0.55		0.55	V
I _I	Input leakage current	V _{CC} = 5.5 V; V _I = GND or 5.5 V		±0.01	±1.0		±1.0	μΑ
I _{OFF}	Power-off leakage current	$V_{CC} = 0.0 \text{ V}; V_{O} \text{ or } V_{I} \le 4.5 \text{ V}$		±5.0	±100		±100	μΑ
I _{PU} /I _{PD}	Power-up/down 3-State output current ³	$V_{\underline{CC}}$ = 2.1 V; V_{O} = 0.5 V; V_{I} GND or V_{CC} ; V_{OE} = Don't care		±5.0	±50		±50	μА
I _{OZH}	3-State output HIGH current	$V_{CC} = 5.5 \text{ V}; V_{O} = 2.7 \text{ V}; V_{I} = V_{IL} \text{ or } V_{IH}$		1.0	50		50	μΑ
l _{OZL}	3-State output LOW current	$V_{CC} = 5.5 \text{ V}; V_O = 0.5 \text{ V}; V_I = V_{IL} \text{ or } V_{IH}$		-1.0	-50		-50	μΑ
I _{CEX}	Output HIGH leakage current	$V_{CC} = 5.5 \text{ V}; V_{O} = 5.5 \text{ V}; V_{I} = \text{GND or } V_{CC}$		5.0	50		50	μА
ΙO	Output current ¹	V _{CC} = 5.5 V; V _O = 2.5 V	-50	-100	-180	-50	-180	mA
I _{CCH}		$V_{CC} = 5.5 \text{ V}$; Outputs High, $V_{I} = \text{GND or } V_{CC}$		65	250		250	μΑ
I _{CCL}	Quiescent supply current	$V_{CC} = 5.5 \text{ V}$; Outputs Low, $V_I = \text{GND or } V_{CC}$		12	15		15	mA
I _{CCZ}		V_{CC} = 5.5 V; Outputs 3–State; V_{I} = GND or V_{CC}		65	250		250	μА
		Outputs enabled, one data input at 3.4 V, other inputs at V_{CC} or GND; V_{CC} = 5.5 V		0.5	1.5		1.5	mA
ΔI_{CC}	Additional supply current per input pin ²	Outputs 3-State, one data input at 3.4 V, other inputs at V_{CC} or GND; V_{CC} = 5.5 V		50	250		250	μΑ
		Outputs 3-State, one enable input at 3.4 V, other inputs at $V_{\rm CC}$ or GND; $V_{\rm CC}$ = 5.5 V		0.5	1.5		1.5	mA

1. Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

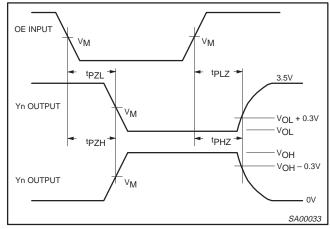
AC CHARACTERISTICS

GND = 0 V; t_{R} = t_{F} = 2.5 ns; C_{L} = 50 pF, R_{L} = 500 Ω

				LIMITS						
SYMBOL	PARAMETER	WAVEFORM	T _a	_{mb} = +25 ° _{CC} = +5.0	C V	$T_{amb} = -40^{\circ}$ $V_{CC} = +5.0$	°C to +85 °C 0 V ±0.5 V	UNIT		
			Min	Тур	Max	Min	Max			
t _{PLH} t _{PHL}	Propagation delay An to Yn	1	1.0 1.0	2.9 3.0	4.2 4.3	1.0 1.0	4.4 4.6	ns		
t _{PZH} t _{PZL}	Output enable time to HIGH and LOW level	2	1.9 1.9	3.2 4.4	5.8 5.9	1.9 1.9	6.5 6.5	ns		
t _{PHZ} t _{PLZ}	Output disable time from HIGH and LOW level	2	1.0 1.0	4.2 2.9	5.2 4.9	1.0 1.0	5.8 5.5	ns		

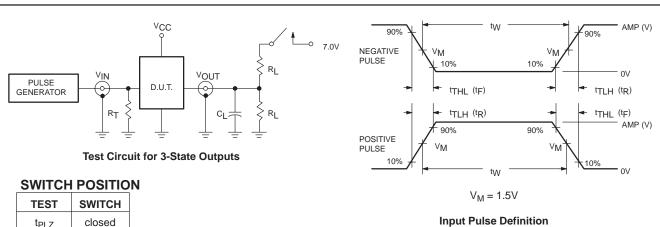

This is the increase in supply current for each input at 3.4 V.
 This parameter is valid for any V_{CC} between 0 V and 2.1 V, with a transition time of up to 100 msec. From V_{CC} = 2.1 V to V_{CC} = 5 V ± 10%, a transition time of up to 100 μsec is permitted.

Quad buffer (3-State)


74ABT126

AC WAVEFORMS

 $V_M = 1.5 \text{ V}, V_{IN} = \text{GND to } 3.0 \text{ V}$



Waveform 1. Waveforms Showing the Input (An) to Output (Yn) Propagation Delays

Waveform 2. Waveforms Showing the 3-State Output Enable and Disable Times

TEST CIRCUIT AND WAVEFORMS

TEST	SWITCH
t_{PLZ}	closed
t_{PZL}	closed
All other	open

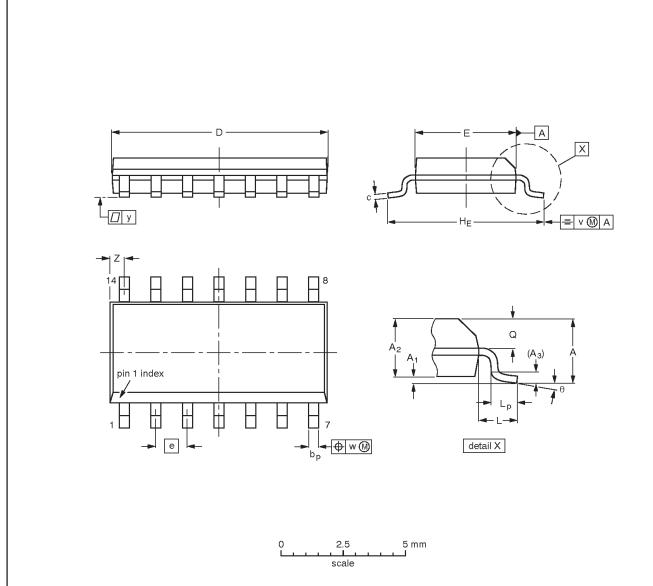
DEFINITIONS

 R_L = Load resistor; see AC CHARACTERISTICS for value.

 $C_L = Load$ capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.

 $\begin{aligned} R_T = & \text{ Termination resistance should be equal to } Z_{OUT} \text{ of } \\ & \text{ pulse generators.} \end{aligned}$

FAMILY	IN	PUT PULSE R	EQUIRE	MENTS	
FAIVIILT	Amplitude	Rep. Rate	t _W	t _R	t _F
74ABT	3.0V	1MHz	500ns	2.5ns	2.5ns


SA00012

Quad buffer (3-State)

74ABT126

SO14: plastic small outline package; 14 leads; body width 3.9 mm

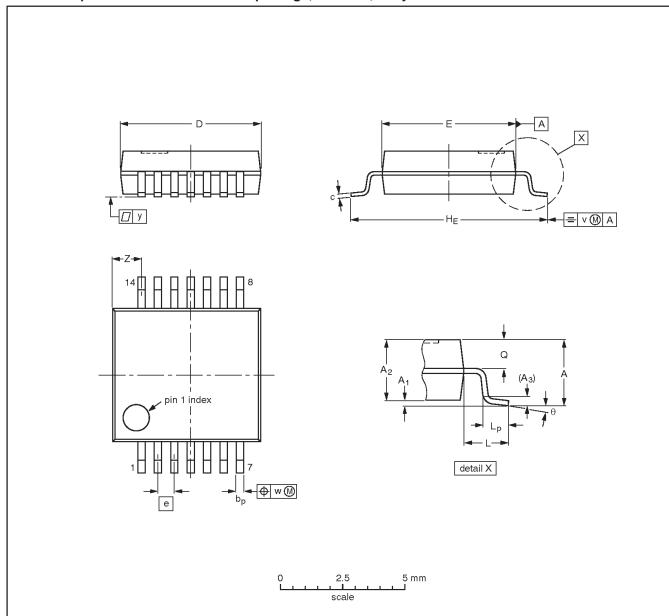
SOT108-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁	A ₂	А3	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	8.75 8.55	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.010 0.004	0.057 0.049	0.01		0.0100 0.0075	0.35 0.34	0.16 0.15	0.050	0.244 0.228	0.041	0.039 0.016	0.028 0.024	0.01	0.01	0.004	0.028 0.012	0°

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.


OUTLINE		REFER	RENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT108-1	076E06	MS-012			-97-05-22- 99-12-27

Quad buffer (3-State)

74ABT126

SSOP14: plastic shrink small outline package; 14 leads; body width 5.3 mm

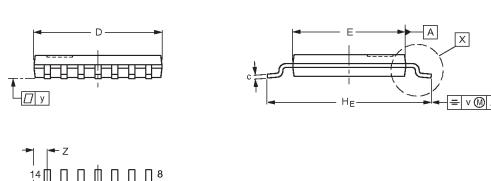
SOT337-1

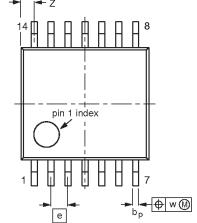
DIMENSIONS (mm are the original dimensions)

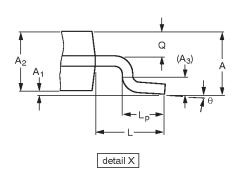
	٠,					,												
UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	2.0	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	6.4 6.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	1.4 0.9	8° 0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.


OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE	
SOT337-1		MO-150				-96-01-18 99-12-27	


Quad buffer (3-State)


74ABT126

TSSOP14: plastic thin shrink small outline package; 14 leads; body width 4.4 mm

SOT402-1

DIMENSIONS (mm are the original dimensions)

UN	IT A	. A	11	A ₂	Α3	bp	C	D ⁽¹⁾	E ⁽²⁾	e	HE	L	Lp	œ	٧	w	у	Z ⁽¹⁾	θ
mr	n 1.1	1 1	15 05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1.0	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.72 0.38	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ		PROJECTION	
SOT402-1		MO-153				-95-04-04 99-12-27

Quad buffer (3-State)

74ABT126

REVISION HISTORY

Rev	Date	Description
_3	20021213	Product data (9397 750 10856); ECN 853-1607 29291 of 12 December 2002. Supersedes data of 16 January 1998 (9397 750 03462).
		Modifications:
		Ordering information table: remove "North America" column; remove 74ABT126N package offering.
_2	19980116	Product specification (9397 750 03462). ECN 853-1607 18867 of 16 January 1998. Supersedes data of 26 February 1996.

Quad buffer (3-State)

74ABT126

Data sheet status

Level	Data sheet status ^[1]	Product status ^[2] [3]	Definitions
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

^[1] Please consult the most recently issued data sheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products—including circuits, standard cells, and/or software—described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information please visit

http://www.semiconductors.philips.com. Fax: +31 40 27 24825

For sales offices addresses send e-mail to:

sales.addresses@www.semiconductors.philips.com

Koninklijke Philips Electronics N.V. 2002
 All rights reserved. Printed in U.S.A.

Date of release: 12-02

Document order number: 9397 750 10856

Let's make things better.

Philips Semiconductors

^[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

^[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.